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Quantification of blood flow-dependent component in
estimates of beta-amyloid load obtained using
quasi-steady-state standardized uptake value ratio
Zsolt Cselényi1,2, Lars Farde1,2 and for the Alzheimer's Disease Neuroimaging Initiative3

Longitudinal positron emission tomography (PET) imaging of beta-amyloid is used in basic research and in drug efficacy trials in
Alzheimer's disease (AD). However, the extent of amyloid accumulation after clinical onset is not fully known. Importantly, regional
PET data are typically quantified using the standardized uptake value ratio (SUVR), which according to simulations is sensitive to
changes in regional cerebral blood flow (rCBF). We aimed to better understand the potentials of longitudinal amyloid imaging by
disentangling the influence of blood flow on SUVR using experimental data. [18F]AV-45 PET data from 101 subjects, ranging from
cognitively normal to AD patients, in the Alzheimer's Disease Neuroimaging Initiative were extracted. The relationship between
global cortical distribution volume ratio, indicator of rCBF (R1), and SUVR was examined using multilinear regression. There was a
significant effect of rCBF on SUVR. The effect increased by disease severity. Results suggest that changes in rCBF can produce
apparent changes in SUVR in AD. Therefore, future longitudinal studies should measure amyloid changes in a way not sensitive to
this effect, ideally using quantitative PET imaging. Furthermore, the results suggest no true accumulation beyond clinical onset and
highlight the risks of longitudinal amyloid imaging in drug trials in AD.
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INTRODUCTION
Positron emission tomography (PET) imaging has contributed to
our understanding of Alzheimer's disease (AD). In recent years,
radioligands binding specifically to fibrillar amyloid-β (Aβ) have
been successfully applied.1 The radioligands have enabled in vivo
detection of amyloid deposits2–5 and have been implemented in
clinical research including longitudinal amyloid imaging such as in
the Alzheimer's Disease Neuroimaging Initiative (ADNI) or in the
Australian Imaging Biomarkers and Lifestyle study.6,7 Importantly,
cross-sectional results indicate that the prevalence of high
amyloid binding is 15% to 25% in cognitively normal (CN) elderly
controls, 50% to 70% in patients with mild cognitive impairment
(MCI), and 85% to 95% in those with probable AD.8–11 The findings
suggest that the process of amyloid accumulation starts several
years before clinical onset, is slow and gradual with only a few per
cent annual increase in amyloid burden.12 For example, findings
using the radioligand [11C]PIB indicate an annual change in
standardized uptake value ratio (SUVR) units of about 0.025 to
0.050 (i.e., 2% to 5%) in MCI and AD patients.6,8,9 However, the
accumulation appears to taper off around the time of clinical
diagnosis. Whereas some longitudinal studies have reported slight

further increases in clinical AD for baseline positive patients6,8,13,14

others have not been able to do so.9,10,15

For treatment of AD, there is a large unmet medical need for
disease-modifying drugs. Clinical development of such drugs rely
on biomarker data showing drug effect on the underlying patho-
logy. In particular, studies on disease modifiers acting directly or
circuitously on the amyloid pathway have made use of serial,
longitudinal amyloid imaging to monitor and compare the rate of
amyloid accumulation between actively treated and placebo
groups of patients.14,16,17 For the purpose of future drug
development, a good understanding of the expected accumula-
tion rate in untreated patients is of key importance.
The typical acquisition protocol used for clinical amyloid PET

imaging is a short (10 to 30minutes) interval initiated several
minutes (typically at least 50minutes for 18F tracers) after
radioligand injection.18,19 This approach provides data for calcula-
tion of the SUVR between amyloid-rich target regions and an
amyloid-free reference region. In the standard quantification
procedure, the regional radioactivity concentration is first converted
to standardized uptake values (SUVs) typically by a global normal-
ization involving a division with total injected radioactivity and
multiplication with body weight. Then, the ratio between target and
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reference regions is calculated to obtain regional SUVRs. The
reference region is typically the cerebellar gray matter, the whole
cerebellum, or a white matter dominated region (e.g., brain stem or
centrum semiovale). The timing of the PET acquisition corresponds
to the quasi-steady-state (secular or transient equilibrium) phase of
radioligand binding (Figure 1).20,21 This phase is characterized by a
gradual wash-out of radioactivity from both target and reference
regions and the time curve for the ratio of radioactivity between
target and reference regions is almost stable though with a slight
positive slope for several radioligands.22–26

The SUVR value is viewed as an index for specific binding and its
proportionality to the distribution volume ratio (DVR), obtained
using fully quantitative PET acquisition and analysis, has been
shown for several amyloid radioligands.22–24,26 However, the
quasi-steady-state SUVR values are biased in the sense that they
overestimate DVR as the time window of acquisition occurs after
the peak time of specific binding.20,27 For amyloid radioligands,
the overestimation by quasi-steady-state SUVR has been esti-
mated to be 30% to 70%.22–24,26

A further property of the quasi-steady-state SUVR value is that
the overestimation is sensitive to absolute or relative changes in
regional cerebral blood flow (rCBF). For amyloid imaging, such an
effect has recently been suggested from recent experimental data
with [11C]PIB, showing an unexpected overall longitudinal
decrease of amyloid load in a group untreated AD patients when
using quasi-steady-state SUVR for quantification.28 Moreover, the
effect was further evaluated in the same study through the use of
simulations.28 In case of quasi-steady-state SUVR, this effect is such
that the overestimation is larger when rCBF in the target areas is
reduced compared with the reference region.28 This effect is a
concern since reduced rCBF is a core feature of AD patho-
physiology.29,30 Longitudinal monitoring of SUVR values for
amyloid load may thus be influenced by changes in rCBF. In
contrast, changes in rCBF do not appear to have a significant
effect on DVR values estimated using nonlinear modeling or
graphical analysis.28 In summary, quasi-steady-state SUVR can be
understood as a composite value consisting of an amyloid load-
(specific binding) dependent component and a rCBF-dependent

component. Though the rCBF-dependent component may be
small it may anyhow influence longitudinal amyloid imaging by
confounding estimates of the potential increase in amyloid plaque
load when gradual changes in rCBF occur such as after clinical AD
diagnosis.
The overall aim of the current work was to better understand

the effect of rCBF changes on SUVR values when following
amyloid accumulation longitudinally as part of large multicenter
clinical studies or drug trials. The rCBF-dependent component of
the quasi-steady-state SUVR was disentangled with the help of
independent estimates of specific binding (DVR) and of relative
target-to-reference differences in rCBF. To estimate relative
differences in rCBF, we used estimates of R1, which is the ratio
of the flow-dependent kinetic rate constant K1 in the target and
reference regions, respectively. The present analysis was based on
[18F]AV-45 PET data in CN subjects, patients with early/late MCI
(EMCI and LMCI), or clinical AD from the ADNI database.

MATERIALS AND METHODS
Subjects
Data used in the preparation of this article were obtained from the ADNI
database (adni.loni.usc.edu). The ADNI was launched in 2003 by the NIA
(National Institute on Aging), the NIBIB (National Institute of Biomedical
Imaging and Bioengineering), the FDA (Food and Drug Administration),
private pharmaceutical companies, and non-profit organizations, as a $60
million, 5-year public private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), PET, other
biologic markers, and clinical and neuropsychologic assessment can be
combined to measure the progression of MCI and AD. Determination of
sensitive and specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. The ADNI
is the result of efforts of many coinvestigators from a broad range of
academic institutions and private corporations, and subjects have been
recruited from over 50 sites across the United States and Canada. The
initial goal of ADNI was to recruit 800 subjects, but ADNI has been followed
by ADNI-GO and ADNI-2. To date, these three protocols have recruited over
1,500 adults, ages 55 to 90, to participate in the research, consisting of CN
older individuals, people with EMCI or LMCI, and people with early AD. The
follow-up duration of each group is specified in the protocols for ADNI-1,
ADNI-2, and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-
GO had the option to be followed in ADNI-2. For up-to-date information,
see www.adni-info.org. Access to the data was granted by the ADNI Data
and Publications Committee in return for accepting to follow the
guidelines of the ADNI data use agreement. Participants in ADNI had
given informed consent to the sharing and use of their deidentified data
with the general scientific community for research purposes.
The ADNI imaging database was searched for subjects who had [18F]

AV-45 PET data both immediately after injection (0 to 20minutes) and at
time of quasi-steady-state (50 to 70minutes post injection (p.i.)). At time of
the present analysis, 105 such subjects could be identified and PET and
MRI data were downloaded from the ADNI Laboratory of Neuroimaging
server (http://www.loni.uda.edu/ADNI/). Data for three subjects were
excluded from analysis because the early and late PET data had different
voxel value units and could not be merged for quantification. Yet another
subject was excluded since the early PET data revealed double bolus
injections (8 to 9minutes apart) thus violating the condition of a single
bolus experiment. By the end, data from 101 subjects were entered into
the analysis. Subject characteristics are presented in Table 1.

Image Acquisition and Preprocessing
The PET data had been acquired on 10 different PET systems (4 GE models,
3 Philips models, and 3 Siemens models) at 19 imaging sites. According to
the ADNI protocol, 370MBq was to be injected intravenously. Injection
data were available for 69 of the subjects in the sample indicating injection
of 363± 28MBq on average (range 275 to 406MBq; 90% of cases within a
± 10% margin of target dose) thus confirming an overall acceptable level of
adherence to the protocol. The protocol for early acquisition provided 20
frames in 20minutes after injection with 4 × 15 seconds, 4 × 30 seconds,
3 × 60 seconds, 3 × 120 seconds, and finally 2 × 240 seconds duration.

Figure 1. Schematic plot to illustrate quasi-steady-state (secular
equilibrium) phase of radioligand binding. In this phase, the
radioligand is washing out from both regions rich in amyloid
(target) and devoid of amyloid (reference). The ratio of regional
radioactivity between target and reference is near horizontal or
slowly increasing. The quasi-steady-state phase in principle is open
ended, in practice bracketed by complete radioactive decay and
radioligand elimination from the body many hours after injection.
SUVR, standardized uptake value ratio.
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The late acquisition protocol provided four 5-minute frames starting 50
minutes after injection.
The ADNI preprocessing scheme involves several steps that start with

the reconstructed 4D (dynamic) decay-, scatter-, and attenuation-corrected
early or late PET data sets and yield reoriented 3D (both early and late) and
4D (only early) PET images with harmonized isotropic 8 mm resolution
along all three image axes (see Supplementary Figure S1 in the
Supplementary material for a flow-chart diagram). However, time-activity
curves (TACs) are not readily available in the ADNI database. Thus, to
obtain the TACs required for the present analysis, the early and late PET
data were merged into a single 70-minute 4D PET image. This required
additional preprocessing of the available images since the individual PET
frames are available in the database in fully preprocessed variant for early
data only. Importantly, the individual frames of late data are provided only
in partially preprocessed version (i.e., after frame-by-frame realignment)
and the final steps of standardizing the orientation and smoothing had not
been performed on separate frames. Therefore, to obtain the data for the
later part of the TAC we performed the preprocessing steps described
below (the flow chart in Supplementary Figure S1 in the Supplementary
material also indicates the additional steps). The ADNI-defined concepts
are quoted within brackets (see also http://adni.loni.usc.edu/methods/
pet-analysis/pre-processing/):
1. The parameters describing the rigid body transformation of the 3D

(average) late PET image (‘Co-registered, Averaged’ in ADNI data) into
standardized orientation and grid size (‘Co-reg, Avg, Standardized
Image, and Voxel Size’) were not available in the database. The
parameters were instead obtained using the coregistration algorithm
in the software package SPM (SPM5, http://www.fil.ion.ucl.ac.uk/spm/).

2. The individual frames of the framewise realigned 4D late image
(‘Co-registered Dynamic’) were then resliced to standard orientation
and grid size by using the coregistration parameters from step 1.

3. The convolution kernel that had been used for smoothing the PET
images from different PET systems to produce images with uniform
isotropic resolution of 8 mm full-width at half maximum was not
available in the ADNI database. Therefore, the kernel was approxi-
mated by deconvolution from the smooth (‘Co-reg, Avg, Std Img
and Vox Siz, Uniform Resolution’) and unsmoothed (‘Co-reg, Avg,
Standardized Image and Voxel Size’) 3D (average) late PET images.
An analogous approximation procedure was applied to the early
averaged PET images. The variant of the convolution kernel with
lowest voxelwise standard deviation in the noncentral portion of the
kernel image (i.e., the one with the least background noise) was
selected as the final kernel.

4. The individual frames of the 4D early PET image in standardized
orientation (‘AV45-Early Coreg, Dyn, Standardized Image and Voxel
Size’) were then smoothed with the convolution kernel to obtain an
image with uniform resolution. Note that even though the ADNI data
already contained a smoothed variant of the 4D early PET image a
new one was anyhow calculated so that exactly the same kernel was
applied for both early and late frames.

5. Similarly, the individual frames of the 4D late PET image in
standardized orientation (obtained in step 2) were smoothed using
the calculated convolution kernel. In contrast to step 4, as noted
above, these data were not available in ADNI.

6. The early and late smoothed frames were merged into a single 4D
data set with 20 frames.

7. The time frames of the 4D image were integrated to obtain
a 3D (average) PET image corresponding to the full merged
data set.

The T1-weighted MR image was reoriented so that the anterior-posterior
commissures defined the horizontal and the mid-sagittal sulcus the vertical
plane. The coregistration parameters describing the rigid body transforma-
tion between the reoriented MR image and the 3D PET image (from step 7)
were obtained using SPM.

Image Postprocessing and Analysis
The reoriented MR image was segmented into gray, white, and
cerebrospinal fluid segments using an algorithm in SPM, which
simultaneously provides the parameters (and their inverse) for normal-
ization to the MNI (Montreal Neurological Institute) template space. The
template for automated anatomic labeling (AAL) of regions,31 defined in
the MNI space, was warped into the individual MRI space using the inverse
normalization parameters. Five double-sided regions of interest (ROIs)
were selected for the present analysis as target regions: lateral frontal
cortex (AAL regions F1, F2, F30, F3T), lateral temporal cortex (AAL regions
T1, HESCHL, T2, T3), medial parietal cortex (AAL region PQ), anterior
cingulate cortex (AAL region CIA), and the posterior cingulate cortex (AAL
region CIP). To serve as a reference region, the cerebellar cortex was
selected, consisting of the following AAL regions: CERCRU1, CERCRU2,
CER3, CER4_5, CER6, CER7B, CER8, CER9, CER10, VER1_2, VER3, VER4_5,
VER6, VER7, VER8, VER9, and VER10. The ROI masks were resliced
into the space of the PET image using the coregistration parameters
obtained previously. The resliced masks were applied to each frame of the
final 4D PET image (from step 6 above) to obtain regional TACs for
quantification.
In the main analysis and for each ROI, only voxels with the highest

membership in the individual gray-matter probability map were retained
to exclude voxels that consist predominantly of white matter and/or
cerebrospinal fluid. In detail, from voxels, having a summed probability
on the gray, white, and cerebrospinal fluid segments above 50%, only
the ones with the highest probability for gray matter were retained, i.e.,
the gray matter probability of retained voxels was always greater
than 17%.
Three additional analyses were also performed. The first two aimed to

better understand the impact of using target and/or reference regions,
which are more dominated by white matter, a frequent practice in amyloid
imaging. In both analyses, the whole cerebellum, including white matter,
was used as the reference region. Furthermore, the first additional analysis
also included the white-matter dominated voxels in target regions, i.e., it
omitted the use of MRI-driven segmentation from the analysis process. The
second additional analysis kept the use of gray-matter segmentation in the
target regions as described in the main analysis.
The third additional analysis aimed to understand the impact of partial

volume effects (PVEs). To this end, a geometric transfer matrix-based PVE
correction scheme was applied to obtain corrected TACs.32 For further
details, please see the Supplementary material.

Table 1. Subject characteristicsa

CN (N= 60) EMCI (N=16) LMCI (N= 13) AD (N=12) P-value

Age (years) 75.7± 7.0 74.8± 8.6 76.7± 8.6 73.6± 7.9 0.74
Sex (% male/female) 50.0/50.0 50.0/50.0 69.2/30.8 66.7/33.3 0.51
APOE ε4 gene dose (% with 0/1/2 alleles) 76.2/19.0/4.8 (N= 21) 68.8/31.3/0.0 (N= 16) 30.8/53.8/15.4 (N= 13) 20.0/60.0/20.0 (N= 5) 0.03b

Years of education 16.6± 2.8 16.6± 2.9 16.2± 3.8 15.1± 2.9 0.46
Weight (kg) 80.5± 15.5 75.4± 15.2 77.4± 16.9 77.7± 17.4 0.67
MMSE 28.9± 1.4 (N= 59) 28.7± 1.4 (N= 15) 26.1± 3.1 (N= 13) 22.1± 3.8 (N= 12) o0.001c, d

Abbreviations: AD, Alzheimer's disease; APOE, Apolipoprotein E; CN, cognitively normal; EMCI, early mild cognitive impairment; LMCI, mild cognitive
impairment; MMSE, Mini-Mental State Exam. Fisher's exact probability test was applied to determine overall group differences in sex and APOE ε4 gene dose
with the closed testing procedure used to find pairwise differences. For other characteristics, ANOVA was applied and Scheffé-multiple comparison test was
used to compare differences between the means of each pair of subject groups. aData are mean± s.d. unless otherwise indicated. Some characteristics were
not available for all individuals in the group. In this case, the actual sample size is shown in parenthesis after the summary statistic. bAPOE ε4 gene dose was
significantly different between CN and LMCI. cMMSE score was significantly different between LMCI and each of the other subject groups, respectively. dMMSE
score was significantly different between AD and each of the other subject groups, respectively.
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Quantification
The quasi-steady-state SUVR was calculated from the TAC data at 50 to
70minutes p.i. (SUVR50–70). Different possible nonlinear and linear methods
were considered for the quantification of DVR, which were evaluated in a
preparatory analysis, using simulated TACs based on the previously
published [18F]AV-45 data,26 to test the sensitivity of the methods to the
gap in PET data between 20 and 50minutes (data not shown). The
evaluation of nonlinear reference region-based compartment models
indicated that such models may not be reliably used in presence of the
gap, leading to convergence errors and bias in the binding potential
estimates with an R1 dependency. However, the graphical multilinear
reference Logan fit showed an excellent linear correlation (R240.998, slope
~ 0.95) between DVR estimates from continuous and interrupted TACs.33,34

Thus, DVR from the full 0 to 70minutes PET data using multilinear
reference Logan fit was used to serve as a reference for amyloid density. To
serve as an estimate of relative difference in rCBF between target and
reference regions, the parameter R1 was calculated from early PET TAC
data (SUVR 0 to 2 minutes p.i.), which previously has been shown to
provide accurate estimates.35 No correction was made for blood volume
content in the TACs in lack of blood radioactivity information. However,
blood volume content should in general be similar between target and
reference regions thus it should largely cancel out when estimating R1 with
any remaining effect likely parallel to R1. For each parameter, the values
obtained for the five target ROIs were averaged to obtain a single global
measure for the individual.
In theory, the exact relationship between the three parameters (DVR, R1,

and SUVR50–70) is nonlinear and with no known analytical solution.
Thus in the present analysis we instead evaluated how well the
relationship between the parameters can be approximated using a simple
linear function with two independent variables. More specifically, to
determine the blood flow-dependent component in SUVR50–70 the three
parameters (DVR, R1, and SUVR50–70) from all PET images (N= 101) were
entered into a multivariate total least squares (TLS) regression analysis.36

The TLS approach is advantageous since it accounts for the fact that both
dependent (SUVR50–70) and independent (DVR and R1) variables contain
observational errors, which should be of similar magnitude. The TLS
evaluation was implemented using principal component analysis.36 From
the resulting three principal components the one with the lowest
eigenvalue provided the direction perpendicular to the plane correspond-
ing to the best fit in terms of the TLS error, i.e., minimizing the
perpendicular distance of each fitted 3D point (DVR, R1, SUVR50–70
parameter triplet) to the plane. Thus, the 3D point defined by the R1,
DVR, and SUVR50–70 triplet could be projected perpendicularly to the
closest 3D point on the plane (subsequently referred to as R1, DVR,
SUVR50–70, i.e., the bold typeface indicating fitted values). The perpendi-
cular vector projecting points to the plane was defined by ε1, ε2, and ε3
along the three axes, respectively. The equation for the fitted plane was
expressed as a bivariate function of DVR and R1:

SUVR50- 70 ¼ b1 ´DVRþ b2 ´R1 þ b3 ð1Þ
Importantly, the equation can be split into an amyloid-dependent and a
flow-dependent component. The amyloid-dependent component can
conveniently be written as:

Amyloid component in SUVR50- 70 ¼ b1 ´DVRþ b2 þ b3 ð2Þ
i.e., assigning to this component both the intercept and the contribution of
relative flow in the region (R1) when it is ‘typical’ (R1 = 1). Consequently, the
flow-dependent component can be written as:

Flow component in SUVR50 - 70 ¼ b2 ´ R1 - 1ð Þ ¼ b2 ´R1 - b2 ð3Þ
i.e. considering the effect of the relative blood flow deviating from unity.
Furthermore, the measured SUVR50–70 value can be expressed as the

fitted SUVR50–70 value plus the error term along the SUVR50–70 axis (ε3),
which, after expanding SUVR50–70 according to equation (1), yields:

SUVR50 - 70 ¼ b1 ´DVRþ b2 ´R1 þ b3 þ ε3 ð4Þ
On account of the fitted plane the contribution of either amyloid binding
or blood flow can be ‘factored out’ from SUVR50–70. The effect of blood
flow can be removed from SUVR50–70 (i.e., the ‘flow-corrected’ SUVR50–70,
denoted as FCSUVR50–70 can be obtained) either using equation (3):

FCSUVR50- 70 ¼ SUVR50 - 70 - b2 ´ R1 - 1ð Þ ð5Þ
or, equivalently, by adding the noise term ε3 to equation (2):

FCSUVR50- 70 ¼ b1 ´DVRþ b2 þ b3 þ ε3 ð6Þ

Equations (5 or 6) essentially give the SUVR50–70 value as if the blood flow
was the same in the target region as the reference region (i.e., R1=1).
Conversely, the amyloid-dependent component can also be removed from
the SUVR50–70 values, yielding the ‘amyloid-corrected’ SUVR50–70 values
(ACSUVR50–70), either using equation (2):

ACSUVR50 - 70 ¼ SUVR50- 70 - b1 ´DVR - b2 - b3 ð7Þ
or, equivalently, by adding the noise term ε3 to equation (3):

ACSUVR50 - 70 ¼ b2 ´ R1 - 1ð Þ þ ε3 ¼ b2 ´R1 - b2 þ ε3 ð8Þ
To determine the statistical uncertainty for the plane parameters b1–3,
nonparametric bootstrap-based confidence intervals at the 95% level were
obtained for b1–3 as has been described in the literature.37 The number of
bootstrap samples was 1,000 × the number of fitted parameter triplets, i.e.,
in total 101,000 for the 101 subjects.
To highlight the impact of the multivariate fit, a similar TLS fit as well as a

simple linear correlation analysis were performed on SUVR50–70 versus DVR,
and SUVR50–70 versus R1, respectively.

RESULTS
The ADNI PET data were successfully preprocessed and TACs were
extracted as described in Materials and methods for the 101
subjects. Initially, we examined the direct relationship between
SUVR50–70 and DVR for the 101 subjects included (Figure 2A and
Table 2, first row). The correlation was highly significant with
~ 95% of the total variance explained. The fit shows that the
SUVR50–70 values were about 60% higher than the DVR values
(Figure 2A).
Subsequently, the relationship between SUVR50–70 and R1 was

evaluated (Figure 2B and Table 2, second row). The correlation was
low and could only explain about 1.5% of the total variance.
Accordingly, the TLS-fitted linear relationship appeared to be
noninformative with a near-vertical slope and 95% confidence
limits crossing zero for both fitted parameters.
In the central analysis of this work, the three parameters SUVR,

DVR, and R1 were entered into a multivariate TLS analysis. To
illustrate the overall outcome of the analysis, a 3D orthographic
projection is shown in Figure 3. It can readily be seen that the
fitted plane is tilted not only along the axis of amyloid binding
(DVR), with higher SUVR50–70 for higher amyloid load, but also
along the axis of relative blood flow (R1), with higher SUVR50–70 for
lower relative blood flow. Furthermore, visual inspection reveals
that most of the points (70% to 80%) were close to the fitted plane
with off-plane points symmetrically scattered on both sides of
the plane.
Parameters of the multivariate TLS analysis are given in Table 2,

row 3. The slope parameter along the DVR axis (b1) was similar to
that seen for the univariate analysis (Figure 2A and first row of
Table 2) with a slightly more narrow 95% confidence interval.
However, the slope parameter along the R1 axis (b2) was markedly
different when compared with the noninformative univariate
regression (Figure 2B and Table 2, second row) with 95%
confidence limits indicating a significant negative relationship
with a slope of − 0.43 between SUVR50–70 and R1. There was a
negative point estimate for the intercept term (b3) in the
multivariate model but it was not significantly different from zero.
Based on the fitted multivariate model, it was possible

to disentangle correlation among the three parameters. There
was a strong correlation between the flow-corrected values
(FCSUVR50–70, see equation (5)) and the DVR estimates
(Figure 4A). Comparing the regression with that shown in
Figure 2A it appears that even though the differences were small
yet both the total variance explained and the significance of the
regression may have increased. Visually, the points were in general
closer to the fitted line.
Figure 4B illustrates the regression of cortical amyloid-corrected

values (ACSUVR50–70, see equation (7)) versus the R1 estimates.
According to correlation analysis, ~ 75% of the total variance could
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be explained by a linear relationship, which is in agreement with
visual inspection of the scatter points since they appear to be
close to the fitted line.
To examine the effect of blood flow on SUVR50–70 in more detail,

the flow-dependent component in SUVR50–70 was extracted from
the various subject groups (Figure 5). On average, the AD group
had the highest component (mean± s.d. = 0.030 ± 0.040, N= 12),
followed by LMCI (mean± s.d. = 0.010 ± 0.038, N= 13) with values
close to zero in EMCI (mean± s.d. = 0.002 ± 0.026, N= 16) and CN
(mean± s.d. =− 0.001 ± 0.028, N= 60). The mean blood flow-
dependent effect was different in an uncorrected multiple
comparison at the α= 5% level between AD and EMCI (P value:
0.033), and between AD and CN (P value: 0.0019), respectively
(two-sided, two sample t-test). Performing an ANOVA indicated an
overall group effect at the α= 5% level (P value: 0.018) and a
conservative Scheffé-multiple comparison procedure indicated a
retained significant group difference between AD and CN.38

Detailed results of the three additional analyses are presented
in the Supplementary material. In short, the multivariate analysis
yielded a fitted plane with a slope along the R1 axis of − 0.40 (95%
CI: − 0.61 to − 0.23) in the first, − 0.34 (95% CI: − 0.46 to − 0.23) in
the second and − 0.83 (95% CI: − 1.32 to − 0.50) in the third
additional analysis, respectively.

DISCUSSION
Aβ aggregates, which may take the form of diffuse plaques or
dense core, neuritic plaques, are a major pathologic hallmark of
AD with postmortem histopathologic detection of neuritic plaques
contributing to the definitive diagnosis of the disease.39 A gradual
increase in amyloid plaque load over the years preceding clinical
onset has been described in the literature.8,12 However, there is
less consistency among reports regarding the presence of further
increase in amyloid load after clinical onset.6,8–10,13–15 In contrast,
changes in brain structure (atrophy), rCBF (hypoperfusion), and
function (hypometabolism) have been unequivocally shown for
both the preclinical and clinical phases of AD.29,30 In this context,
one can note that in vivo quantification of cerebral amyloid using
PET imaging necessarily involves the delivery and removal of

intravenously injected radioligand to and from brain tissue.
Consequently, longitudinal changes in rCBF may lead to altered
radioligand kinetics. The possible presence of such effects on
SUVR-based estimates for amyloid plaque load have recently been
suggested from experimental data and further highlighted by use
of simulations.28 The present work is the first direct quantification
of the effect of relative rCBF differences on quasi-steady-state
SUVR using single-occasion experimental data. Using a multi-
variate TLS regression approach for [18F]AV45 data, the aim was to
disentangle the blood flow-dependent component of the quasi-
steady-state SUVR50–70 values that are typically used to assess
amyloid load in a clinical setting. The main finding is a significant
negative relationship between relative rCBF (R1) and SUVR50–70
with an ~ 0.04 unit increase in SUVR50–70 for every 0.1 unit
decrease in R1.
The observed effects on SUVR50–70 may not at first appear to be

large yet the implications of these findings can be substantial in
the context of longitudinal monitoring of Aβ load as a biomarker
of disease progression for drug development. Even though no
longitudinal data for [18F]AV-45 have been published to date yet
longitudinal [11C]PIB results may anyhow be considered thanks to
the aforementioned head-to-head data for these radioligands.
Assuming an approximately 60% lower affinity of [18F]AV-45
(ref. 40) the 0.025 to 0.050 SUVR/year change reported in MCI/AD
using [11C]PIB may correspond to an [18F]AV-45 change of 0.015 to
0.030 SUVR/year. Thus, the blood flow effects of 0.01 and 0.03
observed in LMCI and AD, respectively, in the present analysis
appear to be comparable to the indirectly estimated annual
change values in the SUVR values for [18F]AV-45 binding.
Consequently, it is plausible that the reported longitudinal

increase in SUVR after clinical onset of AD is apparent and
influenced by longitudinal reductions in rCBF. At present, it cannot
be excluded that there is no increase in amyloid load beyond
clinical onset of AD. This observation is of particular importance
for drug trials with longitudinal amyloid imaging, which recruit
patients reaching clinical onset before or potentially during the
trial period, i.e., AD or LMCI patients. Specifically, the uncertainty
as to the true rate of amyloid accumulation in such populations
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poses challenges to confidently calculate the power to determine
the necessary subgroup sample sizes.
In the primary analysis, only gray-matter dominated voxels were

selected for both the target and reference regions since this
approach allows for the most straightforward interpretation of the
findings with a typical expected R1 parameter in healthy tissue of 1.
The first two additional analyses in the current paper evaluated the
use of white-matter rich whole cerebellar reference region and
unsegmented target regions (see Supplementary material). As
expected, the parameters of the fitted multivariate plane were
somewhat different yet, importantly, the calculated negative slope
along the R1 axis was anyhow significant and the group differences
were similar so that implications and the final conclusions are the
same. Therefore, it appears that the challenges posed by the blood
flow effect cannot be addressed by the choice of reference region.
The third additional analysis evaluated the influence of PVE on

the observed relationships between the parameters. Partial
volume effect in PET images comprises spill-out of measured
radioactivity signal from cortical regions and spill-in of radio-
activity from adjacent white matter. Together with an influence of
changes in rCBF, PVEs may result in the alteration of the kinetic
parameters (R1, DVR, and SUVR) in complex ways. The analysis
indicates that PVE overall dampens the dynamic range of all three
parameters in such a way that both slopes of the bivariate
TLS-fitted plane are more shallow without PVE correction (i.e., in
the main analysis) than with it (i.e., in the third additional analysis).
In other words, PVEs do not create the observed blood-flow
effects, rather they appear to reduce the influence of rCBF to some
extent. Importantly, however, the blood flow effect was anyhow
persistent across all variants of the TLS analysis. Furthermore, the
observed groupwise trends and differences were also similar
across analyses albeit the P values were somewhat less significant
in the PVE correction-based analysis probably due to more
variance in the corrected data. In conclusion, the observed
relationship between the parameters, importantly that between
SUVR50–70 and R1, in the main analysis do not appear to be simply
the consequence of PVEs. Nonetheless, the influence of PVEs on
quantification should also anyhow be considered in longitudinal
studies especially in AD patients with more rapidly progressing
cortical atrophy.
A limitation of the current paper is that only [18F]AV-45 data was

used in the analysis. However, it can be assumed that such effects
would impact all radioligands when using the quasi-steady-state
SUVR approach. In any case, in the future the blood flow effect
should be estimated from experimental data for other radi-
oligands as well. A further limitation was that the PET and TAC
data had a gap (20 to 50 minutes p.i.). However, the impact on
graphical analysis, used to estimate DVR, should in theory be
limited. First, the profiles of the cumulative integrals of the TACs of
the target and reference regions were well captured for the
important phases, i.e., early distribution and quasi-steady-state.
Second, due to the trapezoidal integration of TAC data, used in

calculating the points for the graphical plot, the missing TAC data
between 20 and 50minutes p.i. were effectively approximated by
linear interpolation. Furthermore, the preparatory analysis,
described in Materials and methods, also suggested that the data
gap may have limited influence on the graphical DVR estimates
such that any consequent error in the estimated slope along the

Table 2. Total least square analyses of the relationships between SUVR50–70, DVR, and R1

Variables Equation for fitted line or plane TLS parameter estimates (with 95% confidence limits)

SUVR50–70, DVR SUVR50–70= b1×DVR+b2 b1 = 1.62[1.54; 1.71]
b2 =− 0.57[− 0.67; − 0.47]

SUVR50–70, R1 SUVR50–70= b1× R1+b2 b1 =− 26.80[− 763.85; 61.50]
b2 = 27.93[− 59.70; 756.00]

SUVR50–70, DVR, R1 SUVR50–70= b1×DVR+b2× R1+b3 b1 = 1.60[1.53; 1.68]
b2 =− 0.43[− 0.62; − 0.27]
b3 =− 0.12[− 0.31; 0.08]

Abbreviations: DVR, distribution volume ratio; SUVR, standardized uptake value ratio; TLS, total least squares.
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R1 axis in the TLS fit should be within 10% (data not shown). Thus,
the data gap likely did not account for the effect shown in the
main analysis.
Another limitation of the present work is that coregistration and

smoothing parameters used in the preprocessing of PET data had
to be recalculated since they were not readily available in the
ADNI database. However, comparisons between the ADNI-
provided and the recalculated average PET images indicated
excellent voxelwise correlation and agreement between the two
variants (R2 value of 0.996 ± 0.0037 for voxelwise intensities across
subjects and a bias in global cortical SUVR50–70 of 0.0002 ± 0.0061,

min: − 0.0296, max: 0.0242). As such, the use of recalculated
parameters should not have caused the observed effect of relative
differences in rCBF.
An additional potential concern is that the PET data used

originate from multiple imaging sites and from different PET
systems. First, it is good to point out that the ADNI protocol has
standardized image acquisition parameters and a preprocessing
scheme yielding images with harmonized resolution so measured
regional kinetics of the tracer should not be expected to be
substantially different between subjects. Second, the possible
influence of the aforementioned heterogeneity was anyhow
evaluated by data partitioning: by repeating the TLS analysis
several times on subsets of data so that only certain sites and/or
PET systems were included at each run. Importantly, the TLS-fitted
planes from all such subanalyses were very similar to the main
analysis: both slopes (along the DVR and R1 axes, respectively) were
statistically significantly different from zero but not significantly
different from the estimates in the main analysis (detailed data not
shown). As such the results presented appear to be robust and
should not simply be the consequence of multisite heterogeneity.
In any case, further line of research on the influence of rCBF
changes on the quantification of longitudinal amyloid accumula-
tion would benefit from dedicated studies tailor-made for that
purpose. Finally, the multicenter nature of the ADNI data can be
viewed as an advantage aiming to understand the practical
importance of the effect of rCBF changes in the context of large
applied clinical studies and drug trials with similar multisite designs.
Based on the present findings, it appears that valid, accurate

longitudinal monitoring of Aβ load requires at the minimum a
correction of the quasi-steady-state SUVRs. Such a correction may
be possible to some degree with the help of early acquisition or
perhaps separate [18F]FDG data.35 Preferably, however, it is
advisable to use an acquisition protocol and quantification
approach that is free from blood flow effects in the first place,
such as a continuous (4D) quantitative PET acquisition with DVR
estimation using graphical analysis or nonlinear modeling.
In summary, the current findings suggest that changes in rCBF

can in essence produce an effect on quasi-steady-state SUVR
values that are at a similar level as the previously reported annual
SUVR increases, i.e., equivalent to a 2% to 5% apparent increase in
amyloid burden in LMCI/AD. Therefore, future longitudinal studies,
either in basic research on disease pathophysiology or in drug
efficacy trials, must account for the blood flow effect by measuring
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amyloid changes in a way that is not sensitive to this effect. The
best-suited option for this purpose is quantitative PET imaging
providing DVR estimates. Finally, the hereby experimentally
implicated uncertainty as to the true rate of amyloid accumulation
after clinical onset highlights the challenges of using this
biomarker in clinical drug trials in LMCI/AD patients.
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